Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
Smoothing parameter selection for smoothing splines: a simulation study
Smoothing splines are a popular method for performing nonparametric regression. Most important in the implementation of this method is the choice of the smoothing parameter. This article provides a simulation study of several smoothing parameter selection methods, including two so{called risk estimation methods. To the best of the author's knowledge, the empirical performances of these two risk...
متن کاملEstimation of B-spline Nonparametric Regression Models using Information Criteria
Nonparametric regression modelling has received considerable attention and many methods have been proposed to draw information from data with complex structure. We consider the use of B-spline nonparametric regression models estimated by penalized likelihood methods. A crucial point in constructing the models is in the choice of a smoothing parameter and the number of knots, for which several a...
متن کاملSingle-index model selections
We derive a new model selection criterion for single-index models, AICC , by minimizing the expected Kullback-Leibler distance between the true and candidate models. The proposed criterion selects not only relevant variables but also the smoothing parameter for an unknown link function. Thus, it is a general selection criterion that provides a uniÞed approach to model selection across both para...
متن کاملAutomatic Selection of Parameters in Spline Regression via Kullback-Leibler Information
Based on Kullback-Leibler information we propose a data-driven selector, called GAIC (c) , for choosing parameters of regression splines in nonparametric regression via a stepwise forward/backward knot placement and deletion strategy 1]. This criterion uniies the commonly used information criteria and includes the Akaike information criterion (AIC) 2] and the corrected Akaike information criter...
متن کاملIs Cp an empirical Bayes method for smoothing parameter choice?
The Cp selection criterion is a popular method to choose the smoothing parameter in spline regression. Another widely used method is the generalized maximum likelihood (GML) derived from a normal-theory empirical Bayes framework. These two seemingly unrelated methods, have been shown in Efron (Ann. Statist. 29 (2001) 470) and Kou and Efron (J. Amer. Statist. Assoc. 97 (2002) 766) to be actually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007